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a b s t r a c t

Current–voltage relations of a single intercalation battery electrode particle were modeled with the
step current, step voltage, linear sweep voltage, and sinusoidal current signals. A solid solution with
constant diffusivity, a solid solution with variable diffusivity, and a phase transformation material were
considered for their thermodynamic and kinetic evaluations based on the regular solution model and the
generalized Poisson–Nernst–Planck equations. The numerical simulation results were compared with
known, small-signal solutions and experimental data throughout the article.
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. Introduction

Electrode particles in intercalation batteries work by the
nsertion/intercalation and extraction/deintercalation of ions and
lectrons to and from the host. In the case of lithium intercalation,
ithium ions enter the interstitial polyhedral sites while electrons
ind to the transition metal sites as polarons or band electrons. Not
nly lithium ions and electrons occupy different sites in the host,
hey also come from different external sources, e.g. electrolyte for
ithium ions and current collector for electrons.

The ambipolar charge transport of ions and electrons can be
odeled by the Poisson–Nernst–Planck (PNP) equations composed

f the Nernst–Planck, continuity equations, and Poisson equation.
he PNP equations have been widely used in liquid electrochem-
stry, semiconductors, and ionic channels in biological membranes
1–4], among others. Another popular view of lithium ion and elec-
ron insertion is to treat it as the equivalent of the insertion of a
eutral lithium species, which has been modeled by Fick’s laws [5].
oth the classical PNP equations and Fick’s laws are partial differen-

ial equations that track concentrations and mass fluxes. This makes
hem inconvenient for electrochemical modeling, which typically
oncerns the current–voltage relationship. Classical PNP equations
an be reformulated as equations, that involve current (density)
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378-7753/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.03.055
and voltage variables [6–13], which also have the apparent form of
Fick’s laws [11,12].

Electrochemical modeling focuses on current–voltage rela-
tions, where common electrical signals consist of step currents,
step voltages, linear sweep/scanning voltages, and sinusoidal
current/voltages. All these signals can be found in classical elec-
trochemistry books by Bard et al. [14,15]. Step current or voltage
techniques are called constant-current chronopotentiometry and
potential step chronoamperometry (PSCA), respectively, or simply
chronopotentiometry or chronoamperometry. If a single current
or voltage step is applied, the technique is commonly known
as constant-current or constant-voltage charging/discharging in
the battery field [16]. If the steps are performed sequentially,
chronopotentiometry and chronoamperometry are classified as
galvanostatic intermittent titration technique (GITT) [17] and
potentiostatic intermittent titration technique (PITT) [18], respec-
tively, by Huggins et al. The technique with a linear sweep voltage
is called linear sweep voltammetry (LSV). If the sweeping is
performed, both anodically and cathodically, it is called cyclic
voltammetry (CV). Finally, the technique involving sinusoidal elec-
trical signal is usually called impedance spectroscopy (IS) [19],
dielectric spectroscopy (DS) [20], or electrochemical impedance
spectroscopy (EIS) when applied to electrochemical systems [21].

While it is experimentally routine to apply several of the

above-mentioned techniques simultaneously for the investigation
of battery materials, (e.g. in Ref. [22]), some studies on numerical
simulation only focus on one technique, such as constant current
[23–25], potential step [26,27], linear sweep voltammetry [28,29],

dx.doi.org/10.1016/j.jpowsour.2011.03.055
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:laiwei@msu.edu
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Nomenclature

b mobility
c concentration
c0 reference or maximum concentration
Cchem chemical capacitance
D̃ chemical diffusivity
e electron charge
f dimensionless frequency
fexp experimental frequency
g dimensionless interaction parameter
j dimensionless current density
J current density
Jms mass flux
kB Boltzmann constant
kS jump parameter in the solid
kL jump parameter in the liquid
m planar, cylindrical, and spherical symmetry param-

eter
r length
R resistance
Rint interfacial resistance
t time
t0 characteristic time
T absolute temperature
V voltage
x position
X dimensionless concentration
z charge number

Greek letters
˛ apparent symmetry factor
ıSL solid|liquid interfacial length
ε0 vacuum permittivity
εr relative permittivity
� electrical potential
� dimensionless interfacial energy
� chemical potential
�* reduced chemical potential
�̃ electrochemical potential
�̃∗ reduced electrochemical potential
� conductivity
� dimensionless time
ω angular frequency
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 dimensionless voltage

nd impedance spectroscopy [30]. In these studies Fick’s laws are
lmost invariably used with constant diffusivity. The application of
onstant diffusivity is based on the assumption of “small-signal”
erturbations; however, it is not clear what magnitude should
e considered “small”. In addition, kinetic properties (diffusivity)
nd thermodynamic properties (chemical potential or voltage) are
sually treated as two separate sets of data, while it is recog-
ized that the evolution of systems (kinetics) is determined by
he thermodynamic information under the context of irreversible
hermodynamics [31].

This work seeks to provide a comprehensive numerical study on
he current–voltage relationship of a single intercalation electrode
article with different thermodynamic properties. The thermo-
ynamic model utilized a regular solution model or Frumkin

dsorption isotherm, which will be discussed in Section 2.2. This
tudy will consider three different cases, including a solid solution
ith constant diffusivity, a solid solution with variable diffusivity,

nd a phase transformation material. The evolution of the system, in
s 196 (2011) 6534–6553 6535

the form of the transport of ions and electrons, will be described by
the generalized PNP equations in Section 2.1. Boundary conditions
and dimensionless forms of involved partial different equations are
described in Sections 2.3 and 2.4. Numerical simulation results for
the four common electrical signals such asthe step current, step
voltage, linear sweep voltage, and sinusoidal current, are presented
in Section 3.

2. Models

The detailed discussion of the generalized PNP equations and
the regular solution model can be found in references [11,12] and
is included here for completeness.

2.1. Generalized Poisson–Nernst–Planck (PNP) equations

The classical PNP equations [1–4] are usually formulated as
coupled partial differential equations that track concentration ci,
electrical potential �, and mass flux Jmsi as follows:

Jmsi = −D̃i∇ci − �i
zie

∇�, (1)

∂ci
∂t

+ ∇ · Jmsi = 0, (2)

−εrε0
� =
∑
i

zieci, (3)

where D̃i is the chemical diffusivity, zi is the charge number, e is
the elementary electron charge, and εr and ε0 are relative and vac-
uum permittivity, respectively. The conductivity �i is the product
of concentration ci and mobility bi as follows:

�i = (zie)
2cibi. (4)

For the dilute solution, these equations are known as drift-diffusion
equations in semiconductor devices [3].

These constitutive equations in electrochemistry can be refor-
mulated as generalized Poisson–Nernst–Planck equations [11,12]

J i = −�i∇�̃∗
i , (5)

Cchemi

∂�∗
i

∂t
+ ∇ · J i = 0, (6)

Jdis = − ∂
∂t

(εrε0∇�), (7)

JT = Jdis +
∑
i

J i. (8)

This formulation was primarily discussed under the context of
dilute solutions and impedance spectra reported in the past [6–10].

The correlation between the two formulations is given by sev-
eral physically intuitive but less commonly used parameters. First,
the current density Ji, reduced electrochemical potential �̃∗

i
, and

reduced chemical potential �∗
i

are used in Eqs. (5)–(8), instead of
the conventional mass flux Jmsi , electrochemical potential �̃i, and
chemical potential�i found in Eqs. (1)–(3). The relation is given by
the following:

J i = zieJmsi , �̃i = zie�̃∗
i , �i = zie�∗

i . (9)

The electrochemical potential �̃i is the sum of chemical potential
�i and electrical energy zie� as follows:
�̃i = �i + zie�. (10)

Thus, the reduced electrochemical potential has the form:

�̃∗
i = �∗

i + �. (11)
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ig. 1. Equivalent circuit for a two-charge carrier (positive + and negative −) particl
espectively. Differential resistor (dR+ and dR−) and capacitor (dCchem± ) elements are

econd, volumetric chemical capacitance Cchem
i

represents the
hange of volumetric electrical charge zieci upon a change of
educed chemical potential �∗

i
:

chem
i = zie

∂ci
∂�∗

i

. (12)

hird, chemical diffusivity D̃i is defined as the following:

˜ i =
�i
Cchem
i

. (13)

This new formulation, i.e. Eqs. (5)–(8), is based on a set of
oupled partial differential equations that track the reduced elec-
rochemical potential �̃∗

i
, reduced chemical potential�∗

i
, electrical

otential �, current density Ji, displacement current density Jdis,
nd total current density JT. Importantly, all the potential terms, �̃∗

i
,

∗
i

and �, contain units of voltage. This voltage–current (density)
ormulation is especially convenient for electrochemical modeling
ecause voltage and current signals can be applied and measured
or the experiments. It also allows the mapping of these differen-
ial equations to an equivalent circuit; thus, the physical meanings
f the charge transport can be clearly understood [6–13]. Finally, a
ixed formulation from Eqs. (1)–(3) and (5)–(8), with concentra-

ion ci, reduced electrochemical potential �̃∗
i
, electrical potential

and current densities Ji, lead to equations that are similar to
ewman’s model [13,32].

For a two-charge-carrier (positive + and negative −) particle
nder electroneutrality condition, the generalized PNP equations
5)–(8) under planar (m = 0), cylindrical (m = 1), and spherical
m = 2) symmetry become [11,12] the following:

+ = −�+
∂�̃∗+
∂r
, (14)

− = −�−
∂�̃∗−
∂r
, (15)

∂

∂r
(rmJ+) = rmCchem±

∂(�∗− −�∗+)
∂t

. (16)

he combined chemical capacitance of the ion and electron Cchem±
s the following:

1

Cchem±
= 1

Cchem+
+ 1

Cchem−
= 1
e

∂

∂c
(�∗

+ −�∗
−). (17)

hese partial differential equations can be mapped to an equiv-
lent circuit, as shown in Fig. 1. Here the two-charge system is

solid electrode particle with lithium ions (+) and electrons (−).

he positions 0 and r0 represent the center and surface of the
article, respectively. The two resistor rails correspond to the trans-
ort of two charge carriers, and the chemical capacitors represent
r electroneutrality conditions. 0 and r0 are at the center and surface of the particle,
n along with surface voltages �̃∗

+(r0) and �̃∗
+(r0).

their coupling. The differential resistor (dR+ and dR−) and capacitor
(dCchem± ) elements are shown in Fig. 1.

The surface voltage �̃∗−(r0) determines how lithium ions will be
inserted or extracted from the electrolyte, and the surface voltage
�̃∗+(L) determines how electrons will be inserted or extracted from
the current collector. Thus, the variables of interest are the voltage
difference �̃∗−(r0) − �̃∗+(r0) and current density J+(r0). In addition,
Eqs. (14) and (15) can be written as follows:

J+ − �+
�−
J− = �+

∂

∂r
(�̃∗

− − �̃∗
+). (18)

From the definition of Eq. (11), the difference of the reduced
electrochemical potential is the same as that of the reduced chem-
ical potential

�̃∗
− − �̃∗

+ = �∗
− −�∗

+. (19)

These equations can be simplified if two assumptions regarding the
thermodynamics and kinetics are made. First, it is assumed that the
chemical potential of electrons does not depend on their concen-
tration. Essentially this leads to the position independent chemical
potential, ∂�∗−/∂r ≈ 0. Second, it is assumed that electronic mobil-
ity is much larger than ionic mobility; thus, electronic conductivity
dominates over ionic conductivity under the electroneutrality con-
dition, �+/�− ≈ 0. With these two assumptions, Eqs. (18) and (19)
become the following:

Jms+ = −�+
e

∂�∗+
∂r
. (20)

Eq. (20) can also be written as the following:

Jms+ = −D̃+
∂c+
∂r

= − �+
Cchem+

∂c+
∂r
. (21)

Here, the definitions of Eqs. (9), (12) and (13) are used. Eqs. (16)
and (17) lead to the following equation:

rm
∂c+
∂t

= − ∂

∂r
(rmJms+ ). (22)

Eqs. (21) and (22) have the same form as the well-known Fick’s
laws and can be called generalized diffusion equations. How-
ever, the present formulations presents the conditions to validate
these equations. Second, it displays the relevant voltage variables.

Third, it shows that the chemical diffusivity D̃+ is related to the
kinetic (conductivity �+) and thermodynamic (chemical capaci-
tance Cchem+ ) properties and could depend on the concentration
c+.
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ig. 2. (a) Dimensionless voltage −ln[X/(1 − X)] − g(X − 0.5) for three different therm
2 are spinodal points. (b) Dimensionless chemical diffusivity 1 + gX(1 − X) for three

.2. Regular solution model

A regular solution is a thermodynamic model that describes a
inary AB solution [33,34]. It is also called the Frumkin adsorption

sotherm [35–37], in which the gas species and empty solid surface
ites can be considered as A and B, respectively. In lithium intercala-
ion materials, lithium ions in the polyhedral sites will be denoted

and empty intercalation sites will be denoted B. In the present
otation, the chemical potential of lithium ions is as follows:

+ = �0
+ + kBT ln

X

1 − X + kBTg(X − 0.5), X = c+
c0+
. (23)

he first term on the right hand side �0+ is the standard chemical
otential. The second term is the entropic contribution, where kB

s the Boltzmann constant and T is the absolute temperature. The
hird term is the interaction term that accounts for the interaction
etween A–A, B–B and A–B couples, where g is a dimensionless

nteraction parameter. Variable c0+ is the maximum concentration
nd X is the dimensionless concentration. For this regular solution
odel, the volumetric chemical capacitance becomes the follow-

ng:

chem
+ = e ∂c+

∂�∗+
= e2c0+
kBT

[
1
X

+ 1
1 − X + g

]−1
. (24)

For the kinetics of jumps, the lithium ion mobility depends on
hether the potential jump site is empty, as follows:

+ = b0
+(1 − X), (25)

here b0+ is a constant. This is different from the mobility expres-
ion of reference [38,39], in which the mobility is considered a
onstant. The conductivity then becomes the following:

+ = e2c+b+ = D0+c0+e2

kBT
X(1 − X), (26)

here

0
+ = kBTb0

+. (27)

hus, the chemical diffusivity takes the form of following equation:

�+
˜ + =
Cchem+

= D0
+[1 + gX(1 − X)]. (28)

As reported in Ref. [11], it is informative to plot the dimen-
ionless voltage −ln[X/(1 − X)] − g(X − 0.5) in Eq. (23) and the
amic parameters g = 0, g = − 3, and g = − 5. B1 and B2 are binodal points and S1 and
rent thermodynamic parameters.

dimensionless chemical diffusivity 1 + gX(1 − X) in Eq. (28) for dif-
ferent values of interaction parameters g. Three g values, 0, −3, and
−5, are plotted in Fig. 2. The Langmuir adsorption isotherm corre-
sponds to the case of g = 0. When g is less than −4, both the chemical
capacitance Cchem+ and the chemical diffusivity D̃+ take a negative
value at intermediate X values as can be seen in Fig. 2(b). Because
chemical capacitance is essentially the second order derivative of
free energy with respect to X, this system is unstable and the initial
homogeneous system will separate into two phases [34,40] when
g is less than −4. In the two-phase coexistence region, the chemi-
cal potential is fixed so that the equilibrium thermodynamic curve
becomes the solid line for g = − 5 in Fig. 2(a). The dotted line is
described by Eq. (23). The two ends of this dotted line, B1 and B2, are
called binodal points and have values of approximately 0.145 and
0.855, respectively. The local minimum and maximum points, S1
and S2, are called spinodal points and are approximately 0.276 and
0.724, respectively. The regions between B1 and S1 and between S2
and B2, are metastable. The region between S1 and S2 is the unsta-
ble spinodal region. When g is equal to −4, the chemical capacitance
goes to infinity, and the chemical diffusivity goes to 0 at X = 0.5
(Fig. 2(b)), which was discussed in Ref. [11].

In this study, the regular solution model with g = 0, g = − 3, and
g = − 5 was chosen to represent a solid solution with constant
diffusivity, a solid solution with variable diffusivity, and a phase
transformation material, respectively. During phase transforma-
tion, a phase boundary develops and moves between coexisting
phases. In the present work, a diffuse interface model using the
phase field method was utilized to study the movement of the
phase boundary. In addition to its widespread application in solidi-
fication and morphology evolution [41–44], the phase field method
has recently been applied in a few works to the study of electro-
chemistry in the context of electrodeposition [45,46] and phase
transformation in battery electrodes [38,39,47–49].

In the phase field method, the chemical potential [39] is repre-
sented by the following:

�+ = �0
+ + kBT ln

X

1 − X + kBTg(X − 0.5)

−kBT�r02 1
rm

∂

∂r

(
rm
∂X

∂r

)
. (29)
Compared to Eq. (23), the extra fourth term is the Cahn–Hilliard
interfacial energy term [50], where � is the dimensionless inter-
facial energy parameter. This term goes to 0 in the case of solid
solutions with g = 0 and g = − 3, i.e. Eq. (23). The term � is taken to
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Fig. 3. Schematic depiction of interfacial ionic transport at the solid|liquid interface.
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with ohmic behavior. For intermediate values of R , it can be called
he relevant concentrations c+ and reduced electrochemical potentials �̃∗
+ of the

olid and liquid are labeled along with the interfacial length ıSL .

e 10−5 in this work. This interfacial parameter is related to the
nterface between two coexisting phases in the solid, but not to the
olid|liquid interface to be discussed shortly.

.3. Boundary conditions

If the solid electrode particle is in contact with the liquid elec-
rolyte, the transport of lithium ions occurs across the solid|liquid
nterface. The latter is shown schematically in Fig. 3,where the
nterfacial length is ıSL.Variables c+(r0) and c+(L) are the lithium
on concentrations in the solid and liquid, respectively, on the two
ides of the interface. The driving force is the difference between
he reduced electrochemical potentials of lithium ions, �̃∗+(r0) and
˜ ∗+(L). The jump is assumed to exponentially depend on the driv-
ng force as an Arrhenius rate expression. The jumping probability
lso depends on the direction. Specifically, jumping from liquid to
olid, the jump rate is proportional to the fraction of available sites
iven by 1 − X(r0), while the jump from solid to liquid has no such
estriction.

Thus, the current density from solid to liquid and liquid to solid
an be written as follows:

SL = kS
ıSL
X(r0) exp

[
�̃∗+(r0) − �̃∗+(L)

kBT/e

]
, (30)

LS = kL
ıSL

c+(L)

c0+
[1 − X(r0)] exp

[
�̃∗+(L) − �̃∗+(r0)

kBT/e

]
, (31)

here ks and kL are parameters that incorporate the jumping prob-
bilities. Combining bidirectional fluxes, the current density across
his interface from solid to liquid can be written as follows:

+(r0) = kS
ıSL
X(r0) exp

[
�̃∗+(r0) − �̃∗+(L)

kBT/e

]

− kL
ıSL

c+(L)

c0+
[1 − X(r0)] exp

[
− �̃

∗+(r0) − �̃∗+(L)
kBT/e

]
. (32)

Clearly, the application of the above rationale to the jump from
osition x to x + dx in the solid provides the following equation:

+ = k(x)
dx
X(x)[1 − X(x + dx)] exp

[
�̃∗+(x) − �̃∗+(x + dx)

kBT/e

]

−k(x + dx)
dx

X(x + dx)[1 − X(x)] exp

[
− �̃

∗+(x) − �̃∗+(x + dx)
kBT/e

]
.

(33)
s 196 (2011) 6534–6553

As dx goes to 0, Eq. (33) can be written as the following:

J+ = −2k(r)X(r)[1 − X(r)]
d�̃∗+(r)
dr

. (34)

This expression is consistent with Eqs. (5) and (26), as shown
before.

At the solid|liquid interface, the expression of Eq. (32) can be
simplified in different ways. First, it can be written as the following:

J+(r0) = J0

{
exp

[
˛
�̃∗+(r0) − �̃∗+(L)

kBT/e

]
− exp

[
−˛�̃

∗+(r0) − �̃∗+(L)
kBT/e

]}

= 2J0 sinh

[
˛
�̃∗+(r0) − �̃∗+(L)

kBT/e

]
. (35)

This equation has a form similar to that of the Butler–Volmer equa-
tion [14,51–53]. The apparent exchange current density J0 and
symmetry factor ˛ can be represented as the following:

J0 =
√
kS
ıSL
X(r0)

kL
ıSL

c+(L)

c0+
[1 − X(r0)], (36)

˛ = 1 + 1
2

kBT/e

�̃∗+(r0) − �̃∗+(L)
ln

kSX(r0)

kL [1 − X(r0)] c+(L)/c0+
. (37)

This formulation is also similar to the symmetrized form of the
transport equation under a large gradient driving force [54].
Because the classical Butler–Volmer equation can be approximated
by the Tafel and linearized equations [14], two similarly simpli-
fied forms of the generalized Butler–Volmer equation, Eq. (35), can
be obtained as de Donder’s equation and the resistive equation,
respectively. First, if the argument in the hyperbolic sine function
is large and positive, Eq. (35) can be written as follows:

J+(r0) = J0
{

exp

[
˛
�̃∗+(r0) − �̃∗+(L)

kBT/e

]
− 1

}
. (38)

This equation has the form of de Donder’s equation, as in Ref.
[47]. The term of 1 in the curly bracket can be ignored because it is
much smaller than the exponential term and it provides the Tafel
form [14].

Second, if the term in the hyperbolic sine function of Eq. (35) is
small, it can be linearized as follows:

J+(r0) = 2˛J0
kBT/e

[�̃∗
+(r0) − �̃∗

+(L)]. (39)

This equation can be called the generalized Chang–Jaffe equation.
In the conventional Chang–Jaffé equation [55], the term in front of
the square bracket is a constant, and the difference term inside the
square bracket is the concentration difference. Furthermore, if the
term before the square bracket is assumed to be a constant, Eq. (39)
becomes the following:

J+(r0) = �̃∗+(r0) − �̃∗+(L)
Rint

. (40)

where Rint is a constant. This expression was used in the study
of interfaces involving mixed conductors [10,56,57] and can be
called a resistive/ohmic boundary condition. This was also called
the cell-impedance-controlled boundary condition [58]. When Rint
is small, it is expected that variable �̃∗+(r0) − �̃∗+(L) will also be
small; this can be called the reversible boundary condition. In this
case, J+(r0) can be determined by the “diffusion equations”, i.e.
Eqs. (20) and (22), which relate J+ to �̃∗+(r0); this can be called
a diffusion-controlled mechanism. When Rint is large, it can be
called an interface-controlled mechanism or kinetics-controlled
int
a mixed-controlled mechanism [26].

Eq. (40) is the interfacial solid|liquid boundary condition that is
employed in the present study and is equivalent to replacing the
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lectrolyte box with a resistor in Fig. 1. At the other boundary, i.e.
he particle center, the flux is zero due to symmetry, as is described
elow:

+(0) = 0. (41)

Finally, in Fig. 1, the voltage difference �̃∗−(r0) − �̃∗+(L) was used
s the external voltage Vext and the current density J+(r0) was used
s the external current. Thus, Eq. (40) was transformed to become
he following:

+(r0) = �∗+(r0) −�∗−(r0) + Vext
Rint

(42)

The equivalence of reduced electrochemical potential difference
o reduced chemical potential difference, Eq. (19), was once again
pplied. In addition, the initial conditions were always set to the
pen circuit, where the current was 0 and the voltage was the open
ircuit voltage Vext(0):

ext(0) = �∗
−(r0, t = 0) −�∗

+(r0, t = 0) (43)

he voltage difference 
V = Vext − Vext(0) after the current or volt-
ge perturbation obeyed the following equation:

+(r0) = �∗+(r0) −�∗+(r0, t = 0) +�V
Rint

. (44)

ere, the chemical potential of electrons is a constant as mentioned
efore.

For convenience, the partial differential equations, Eqs. (20) and
22), along with the boundary conditions, Eqs. (41) and (44), and
xpressions of relevant parameters, Eqs. (26) and (29), are listed
elow:

Jms+ = −�+
e

∂�∗+
∂r

rm
∂c

∂t
= − ∂

∂r
(rmJms+ )

Jms+ (0) = 0

Jms+ (r0) = �∗+(r0) −�∗+(r0, t = 0) +
V
eRint

�+ = D0+c0+e2

kBT
X(1 − X)

�+ = �0+ + kBT ln
X

1 − X + kBTg(X − 0.5)

−kBT�r02 1
rm

∂

∂r

(
rm
∂X

∂r

)

. (45)

.4. Dimensionless form

For numerical simulations, it is convenient to use the following
imensionless variables:

= c+
c0+
, x = r

r0
, � = t

t0
, j = Jms+

c0+r0/t0
,  = −�+ −�0+

kBT
,

R = Rint

kBTr0/(D0+c0+e2)
, 
v = e
V

kBT
. (46)
he characteristic time t0 is represented by the following:

0 = r02

D0+
. (47)
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Then, Eq. (45) becomes the following:

j = X(1 − X)
∂ 

∂x

xm
∂X

∂�
= ∂

∂x
(−xmj)

 = −
[

ln
X

1 − X + g(X − 0.5) − � 1
xm

∂

∂x

(
xm
∂X

∂x

)]
j(0) = 0

j(1) =  (1, � = 0) − (1) +
v
R

. (48)

where  (1, t = 0) +
v is the voltage in the liquid and  (1) is the
voltage on the solid surface. The goal of the present work is to find
the relation between j(1) and  (1, � = 0) +
v.

In the battery field, a commonly used notation for current is the C
rate. C/n is the current that takes n hours to fully charge or discharge
a battery. For a single particle with maximum concentration c0+,
the mass flux density corresponding to the C/n rate becomes the
following:

Jms+ = c0+r0
(m+ 1)n · 3600

. (49)

Then, the dimensionless mass flux density in C rate is described as
the following:

j = 1
m+ 1

t0
3600n

. (50)

For example, a dimensionless flux of 1 through the surface of a
planar (m = 0) particle corresponds to the C or C/10 rates, when the
characteristic time t0 is 1 h or 10 h, respectively.

2.4.1. Phase transformation material
For the phase transformation material, Eq. (48) becomes the

following:

 = −
[

ln
X

1 − X + g(X − 0.5) − � 1
xm

∂

∂x

(
xm
∂X

∂x

)]
, (51)

xm
∂X

∂�
= ∂

∂x

[
−xmX(1 − X)

∂ 

∂x

]
. (52)

Eqs. (51) and (52) are two coupled second-order partial differential
equations on X and . For Eq. (51), the boundary conditions are the
following:

�
∂X(0)
∂x

= � ∂X(1)
∂x

= 0. (53)

This indicates that phase transformation will not occur (zero inter-
facial energy between two phases) at the center and at the surface
of the particle [47]. The boundary conditions for Eq. (52) are the
last two equations in Eq. (48).

2.4.2. Solid solution material
For the solid solution material, the second order partial differ-

ential equation Eq. (51) becomes the following expression:

 = −
[

ln
X

1 − X + g(X − 0.5)
]
. (54)

Because it does not involve partial derivatives, Eq. (52) becomes the
following:

m ∂X ∂
[
m ∂X

]

x
∂�

=
∂x

x [1 + gX(1 − X)]
∂x

. (55)

This is the same second order partial differential equation used in
the present author’s previous work [11].
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Table 1
Partial differential equations along with parameters used in thermodynamics, initial conditions (IC), and boundary conditions (BC).

j = X(1 − X) ∂ 
∂x

xm ∂X
∂�

= ∂
∂x

(−xmj)  = −
[

ln X
1−X + g(X − 0.5) − � 1

xm
∂
∂x

(
xm ∂X

∂x

)]
Solid solution
g = 0, � = 0

Solid solution
g = − 3, � = 0

Phase transformation
g = − 5, � = 10−5

Step current IC X0 = 0.99  (1, � = 0) = − ln[X0/(1 − X0)] − g(X0 − 0.5)
BC � ∂X(0)

∂x
= � ∂X(1)

∂x
= 0 j(0) = 0 j(1) = 0.05, 0.1, 0.2, 0.5

Step voltage IC X0 = 0.9  (1, � = 0) = − ln[X0/(1 − X0)] − g(X0 − 0.5)
BC � ∂X(0)

∂x
= � ∂X(1)

∂x
= 0 j(0) = 0 j(1) =  (1,�=0)− (1)+
v

R ,

v = 0.5, 1, 2, 5; R = 0.1, 1, 10

Linear sweep voltage IC X0 = 0.99  (1, � = 0) = − ln[X0/(1 − X0)] − g(X0 − 0.5)

BC � ∂X(0)
∂x

= � ∂X(1)
∂x

= 0 j(0) = 0 j(1) =  (1,�=0)− (1)+vLSV �
R ,

vLSV = 0.05, 0.1, 0.2, 0.5, 1;
R = 0.1, 1, 10

Sinusoidal current IC X0 = 0.9  (1, � = 0) = − ln
[

X0
1−X0

]
− g(X0 − 0.5)

∂X(0) ∂X(1)

c

X
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BC �
∂x

= �
∂x

= 0

Unless otherwise specified, the initial condition is chosen as a
onstant concentration profile as follows:

(x, � = 0) = X0, (56)

(x, � = 0) = −
[

ln
X0

1 − X0
+ g(X0 − 0.5)

]
. (57)

The above partial differential equations are solved with Comsol
ultiphysics software [59]. The dimensionless spatial grid is uni-

orm, fixed in time, and composed by 500 segments. It was found
he solution converges between 500 and 5000 elements, with the
xception of some cases in impedance spectroscopy (details to be
iscussed later). The equations are solved using the finite element
ethod with a Lagrange quadratic basis, ensuring quadratic con-

ergence of the spatial discretization. In time the problem is solved
sing implicit finite backward finite differences of variable order.

. Results and discussion

Before presenting the numerical results of Eq. (48), the known
mall-signal analytical solutions [12,30] are discussed. The first two
artial differential equations in Eq. (48) can be formally rewritten

s the following:

m ∂X

∂ 

∂ 

∂�
= ∂

∂x

[
−xmX(1 − X)

∂ 

∂x

]
. (58)

ig. 4. Evolution of the concentration profile under a constant charging current j(1) of 0.
ionless times are shown on each curve. B1, B2, S1, and S2 points are the binodal and spin
f 1 and 0, respectively.
j(0) = 0 j(1) = jACsin(2�f�),
jAC = 0.0001, 0.001, 0.01, 0.05;
f = 0.05 − 1000

A small perturbation of any form of j(1) will likely cause small
changes in X and  . If both ∂ /∂X and X(1 − X) are assumed to be
constant during the course of perturbation and initial concentration
profile is uniform X0, perturbations of Eq. (58) yield the following:

xm
∂
 

∂�
=

[
− ∂ 
∂X

∣∣∣∣
X0

X0(1 − X0)

](
xm
∂
 

∂x

)

= D̃(X0)
∂

∂x

(
xm
∂
 

∂x

)
, (59)

where the change of voltage
 is the variable of interest and D̃(X0)
has the following form:

D̃(X0) = 1 + gX0(1 − X0). (60)

After the Laplace transformation with boundary condition j(0) = 0
[12,30], in the planar case (m = 0), Eq. (59) can be solved to provide
the following:


 (1)(s)

j(1)(s)
= 1
X0(1 − X0)

cosh
√
s/D̃(X0)√

s/D̃(X0)
, (61)

where the overbar represents the Laplace transformed variable,

and s is a complex argument. The time-domain current/voltage
perturbation signal, e.g. current step or voltage step, can be trans-
formed to the Laplace domain, and then, Eq. (61) can be inversely
transformed back to the time domain to obtain the corresponding

05 for three different thermodynamic parameters g = 0, g = − 3, and g = − 5. Dimen-
odal points discussed in Section 2.2. Particle surface and center are at the position
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oltage/current signal. When s = iω, where i is the imaginary num-
er andω is the angular frequency, the Laplace transform becomes
he Fourier transform and Eq. (61) provides the impedance. Short-
ime and long-time analytical expressions obtained from Eq. (61)
or the current step (Section 3.1), voltage step (Section 3.2),
nd sinusoidal current (Section 3.4) signals were compared with
umerical results for signals of an arbitrary magnitude.

For the ease of comparison, parameters of thermodynamic
arameters, initial conditions (IC), and boundary conditions (BC)
sed in the various techniques of Sections 3.1–3.4, are listed in
able 1, along with partial different equations that were solved.

.1. Constant-current chronopotentiometry

In the constant-current chronopotentiometry study, a constant
urrent j(1) was applied and the voltage was monitored as a func-
ion of time. As discussed in Section 2.4, for the present single
article, voltage in the liquid  (1, � = 0) +
v was the variable
f interest. However, because the solid surface was connected to
he liquid by a resistor, the extra voltage difference could be easily
btained by multiplying resistance with the constant current. Thus,
he voltage at the particle surface (1) was studied instead and this
lso applied to the controlled-current impedance spectroscopy in
ection 3.4.

Initially, the concentration X0 was a uniform value of 0.99 in the
olid, and the simulation was performed in the charging process
or a cathode particle. The current values j(1) were 0.05, 0.1, 0.2,
nd 0.5 in dimensionless form. The time stepping ended when the
urface concentration X(1) reached 0.01. The time step was 0.005
or a current value of 0.5; otherwise, the time step was 0.02.

The evolution of the concentration profiles in the solid under
constant current of 0.05 is shown in Fig. 4. In the case of solid

olutions with g = 0, − 3, the concentration on the surface x = 1
ecreased under the application of a constant charging current and
radually diffused into the center. In the case of the phase trans-
ormation material with g = − 5, the area defined by the two inner
orizontal dotted lines (S1 and S2) represents the unstable spin-
dal region, as discussed in Section 2.2. The two shells formed by
he inner dotted lines and outer dotted lines (B1 and S1; S2 and B2)
re the metastable regions. Clearly, the evolution of the concentra-
ion profile was similar to that in the solid solution before reaching
he unstable region X = 0.724 (� < 4). Then, phase separation started
nd the phase boundary moved towards the center of the particle
4 ≤ � ≤ 16). Finally, the particle was in another single-phase region
or � ≥ 18.5.

It was interesting to study how fast the phase boundary moved
nd how this process depended on the current. The position and
elocity of the phase boundary at different currents (0.05, 0.1, 0.2,
nd 0.5) are shown in Fig. 5. First, Fig. 5(a) indicates that it moved
inearly with time for the current values investigated:

CC
PB ≈ xCC0 + vCCPB �, (62)

here xCCPB and vCCPB are the phase boundary position and veloc-
ty respectively. Variable xCC0 is a constant. Fitting the xCCPB data to
q. (62) yielded vCCPB , and it was plotted as a function of current in
ig. 5(b). The phase boundary moved faster under higher current,
s intuitively expected.

The capacity-voltage results are shown in Fig. 6. The capacity,
he product of current j(1) and time �, was used to fit the battery
eld convention. The thermodynamic curves in Fig. 2 are also plot-
ed in dashed lines as a reference. As the applied current increased

rom 0, polarization increased for all three thermodynamic cases,
s expected. In addition, the voltage overshoot was observed at the
eginning of charging process in the phase transformation case.
ig. 4 shows that surface concentration entered the metastable
s 196 (2011) 6534–6553 6541

region, e.g. at � = 3, before it reached the unstable region. As can
be seen from Fig. 2(a), the concentration in the metastable region
corresponded to a voltage overshoot beyond the voltage plateau.
This overshoot has been experimentally observed for LiCoO2 as
it goes through the insulator-metal or O3-I to O3-II phase tran-
sition [60–62] and for the triphylite–heterosite phase transition of
LiFePO4 [63].

Finally, the small-signal solution under the context of GITT are
discussed. For the constant current j(1), the short-time voltage
response can be obtained from the Laplace-inverse Laplace trans-
formation of Eq. (61) [12,30]:


 (1)√
�

= 2j(1)
X0(1 − X0)

√
D̃(X0)
�

, (63)

where the right-hand side is a constant. This is similar to the expres-
sion in the GITT Ref. [17]. Results of plotting short-time (� < 1) data
of Fig. 6 in the form of Eq. (63) are shown in Fig. 7. This equation
did not hold even for the lowest current of 0.05, which suggested
that the small-signal approximation is not satisfied at this current.
However, this approximation is valid for a different initial condition
that will be discussed in Section 3.5.

3.2. Potential step chronoamperometry

In the potential step chronoamperometry, a constant voltage
step
v was applied and the current j(1) was monitored as a func-
tion of time. The boundary condition for j(1) in Eq. (48) and three
R values, 0.1, 1, and 10, were studied. These values were chosen
to study different mechanisms, such as diffusion control, mixed
control, and interface control.

Initially, the concentration X0 was a uniform value of 0.9 in the
solid, and the simulation was performed in the charging process.
The voltage steps
v were 0.2, 0.5, 1, 2, and 5. The time was incre-
mented in steps 0.02 till j(1) fell below 0.001.

Similar to the case of constant-current chronopotentiometry,
the evolution of concentration profiles was studied first. Fig. 8
shows an example of the case with 
v = 0.5 and R = 1. If there
was no solid|liquid interface, the voltage step implied that sur-
face concentration was fixed, as in Ref. [11]. With an interface, the
voltage step translated to a variable concentration step. Overall,
the concentration steps led to steeper concentration profiles com-
pared to the current steps, in solid solutions of g = 0, − 3 in Fig. 4.
In the case of phase transformation with g = − 5, the change in the
concentration profile under constant potential was similar to the
case of constant current in Fig. 4. A voltage step of 0.5 eventually
changed the surface from the high concentration phase to a low
concentration phase, which was accompanied by the phase bound-
ary movement towards the center. For the smallest voltage step of
0.2, no phase transformation was initiated.

Again, the positions of the phase boundary were tracked
(Fig. 9(a)) with different voltage step
v values and interfacial resis-
tance R values. The phase boundary moved linearly with the square
root of time:

xCVPB ≈ xCV0 + vCVPB �
0.5, (64)

where xCVPB and vCVPB are phase boundary position and velocity con-
stant, respectively. Variable xCV0 is a constant. As the interfacial
resistance was increased, e.g. R = 10, the square root dependence
became less obvious. Fitting the xCVPB data to Eq. (64) yielded vCVPB ,
and it was plotted as a function of the voltage step in Fig. 9(b). The
phase boundary moved faster under larger voltage steps, as intu-

itively expected. In addition, the phase boundary velocity showed
little variation between R = 0.1 and R = 1, which suggested that
both cases were diffusion-controlled. It can be expected that R = 10
would correspond to a mixed-controlled mechanism, and larger
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a b

Fig. 5. (a) Phase boundary positions, and (b) phase boundary velocities under different values of constant current j(1) (0.05, 0.1, 0.2, and 0.5) for the phase transformation
material with g = − 5.

F .05, 0.
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ig. 6. Voltage  (1) as a function of capacity under three different currents j(1) (0
ashed lines represent the thermodynamic voltage curve in Fig. 2(a). The voltage o

values would lead to an interface-controlled mechanism. As R
ecame larger, e.g. 100, the linear time dependence was observed
t long time periods (not shown). In the sharp-interface moving

oundary model, the square root and linear dependences were also
btained for diffusion control and interface control mechanisms,
espectively [64].

ig. 7. Short-time characteristic curves according to Eq. (63) under three different current
nd g = − 5. Dashed lines are the plateaus expected from the small-signal assumption.
2 and 0.5) for three different thermodynamic parameters g = 0, g = − 3, and g = − 5.
ot can be clearly observed in the inset of g = − 5.

Finally, the relation between the voltage step 
v and current
response j(1) are shown. First, small-signal analytical expressions
from Eq. (61) are discussed. If no interface effect was present, 
v

was equivalent to 
 (1). The short-time (Eq. (65)) and long-time
(Eq. (66)) responses of the current j(1) were obtained from the

s j(1) (0.05, 0.2 and 0.5) for three different thermodynamic parameters g = 0, g = − 3,
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ig. 8. Evolution of the concentration profile under a constant voltage step
v = 0
= − 3, and g = − 5. Dimensionless times are shown on each curve. B1, B2, S1, and S2
enter are at the position of 1 and 0, respectively.

aplace-inverse Laplace transform [12,30] as follows:

(1)
√
� = X0(1 − X0)√

�D̃(X0)

 (1), (65)

[
�2

]

(1) = 2X0(1 − X0) exp −

4
D̃(X0)� 
 (1), (66)

here
 (1) is the voltage step. A slightly different form of Eq. (66)
as also presented in Ref. [12] using a different series expansion.

a

b

ig. 9. (a) Phase boundary positions, and (b) phase boundary velocity constant under di
he phase transformation material with g = − 5.
an interfacial resistance R = 1 for three different thermodynamic parameters g = 0,
ts are the binodal and spinodal points discussed in Section 2.2. Particle surface and

Eq. (65) suggests that the product of current and the square root
of time is a constant, also known as the Cottrell equation [14]. Eq.
(66) suggests that the logarithm of current changes linearly with �
at long time periods. These are essentially the same equations as in
the PITT Ref. [18].
The numerical simulation in this work involved the solid|liquid
interface and made no assumption of small signals. Under these cir-
cumstances, the analytical solutions were not available. However,
the results of the solid solutions are still presented in the form of

fferent values of voltage steps 
v (0.5, 1, 2, and 5) and interfacial resistances R for
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qs. (65) and (66) for comparison as dashed lines in Fig. 10(a)–(d),
hile the regular current vs. time plot is displayed in Fig. 10(e) for

he phase transformation material.
For the short-time response of the solid solutions, Fig. 10(a) for

= 0 and Fig. 10(b) for g = − 3, the Cottrell behavior can only be
bserved at small R = 0.1 values and small voltage step of
v = 0.2.
small value of R suggested that it was under diffusion control,

nd a small voltage step 
v implied a small-signal perturbation.
hese two conditions led to results that were similar to those in

qs. (65) and (66). As R became larger, i.e. toward to interface
ontrol, or 
v became larger, i.e. large signal, peak shaped plots
ere observed in Fig. 10(a) and (b). These types of peak shapes

a

b

c

ig. 10. Short-time characteristic curves according to Eq. (65) for (a) g = 0 and (b) g = − 3
alues. Dashed lines represent the expected plateau from small-signal assumption. Long
hree different voltage step and interfacial resistance values. Dashed lines represent the ex
ransformation material g = − 5 under three different voltage step and interfacial resistan
s 196 (2011) 6534–6553

have been observed experimentally for graphite [65] and LiFePO4
[66].

For the long-time response of solid solutions, Fig. 10(c) for g = 0
and Fig. 10(d) for g = − 3, a linear behavior can be observed in all
the R and 
v values investigated. However, the slope only cor-
responded to values predicted from Eq. (66) in situations where
approximations of diffusion control and small-signal can be satis-
fied, such as low R and 
v values. In the case of g = − 3, Fig. 10(d),
deviations of predicted slopes can be observed for most values

studied.

For the case of phase transformation with g = − 5, the current
response following the voltage step, Fig. 10(e), exhibited some

under three different voltage steps 
v (0.2, 0.5, and 1) and interfacial resistance R
-time characteristic curves according to Eq. (66) for (c) g = 0 and (d) g = − 3 under
pected straight lines from small-signal assumption. (e) Current response for phase

ce values.
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nteresting behavior. Initially, the material was in the single-phase
egion. When the voltage step 
v was small, e.g. 0.2, the material
tayed as a single phase for all three R values, thus, the current
ecayed in a manner similar to Eqs. (65) and (66). As
v increased
o 0.5, the current spike was observed for R values of 10 and 1. The
omparison of the current response in Fig. 10(e) and concentra-
ion evolution in Fig. 8 for the same set of data (
v = 0.5 and R = 1)
uggested that the current spike corresponded to the initiation of
hase separation, and the kink at approximately � = 15 marked the
nish of the separation. This behavior was observed more clearly
ith values of
v = 0.5 and R = 10, which showed the initial single-
hase decay, initiation of phase transformation, two-phase decay,
nd finally, another single-phase decay. The two separate single-
hase decaying stages were similar to those of solid solutions with
xponential decay, Fig. 10(c) and (d). The two-phase decay corre-
ponded to the phase boundary movement, which appeared to be
lower. As
v increased further to 1 (R = 1), the initial spike disap-
eared, but the kink was still visible. This situation still progressed
hrough the phase transformation cycle as in the case of
v = 0.5.
hysically, the initiation of phase separation and the phase bound-
ry movement corresponded to nucleation and growth of the new
hase.

First, the initial current increase upon voltage step was observed
xperimentally for graphite [67,68] and LiFePO4 [66], though in the
orm of a hump instead of a spike. The hump was explained by the
ucleation of new phases [66–68] and was quantitatively modeled
y the Johnson–Mehl–Avrami equation [49,69]. Because the cur-

ent spike in Fig. 10(e) was associated with the initiation of phase
eparation, it was expected that a homogenized model of many par-
icles with a distribution of particle sizes and shapes would lead
o a dispersion of time constants to form the hump observed in
inued ).

those experimental composite electrodes. Second, the multi-staged
current decay was also obtained from the sharp-interface moving
boundary problem [58] and has been experimentally observed for
Li4Ti5O12 and Li�V2O5 [70]. Finally, the square root dependence of
the phase boundary movement was also related to the diffusion-
controlled growth in the Johnson–Mehl–Avrami equation [49,69]
and was also observed in in situ measurements of a single SnO2
nanowire [71].

3.3. Linear sweep voltammetry

In linear sweep voltammetry, a linear scanning voltage 
v =
vLSV � was applied and the current j(1) was monitored as a function
of time. The boundary condition used in Eq. (48) was transformed
to the following:

j(1) =  (1, � = 0) − (1) + vLSV �
R

. (67)

Initially, the concentration X0 was a uniform value of 0.99 in the
solid, and the simulation was performed in the charging process.
The scanning rates vLSV were 0.05, 0.1, 0.2, 0.5, and 1. Time was
incremented in steps of 0.02 till X(1) fell below 0.01.

Current j(1) is shown as a function of voltage (1, � = 0) + vLSV �
in Fig. 11 in voltammetry plot. Typical broad peaks were observed
in the solid solutions, Fig. 11(a) for g = 0 and Fig. 11(b) for g = − 3. The
peak position for slow rates was at approximately zero voltage, and

it moved to a higher voltage at faster scanning rates. The peak cur-
rent also increased correspondingly. The difference between R = 1
and R = 0.1 was small, which suggested that they were close to the
reversible (purely diffusion-controlled) mechanism.
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The voltammetry plot of the phase transformation material
= − 5 is shown in Fig. 11(c). For large R = 10, interface control, the
lot was similar to those of solid solutions. Sudden current change
as observed because of the initiation and termination of the phase

ransformation. For small R = 0.1, diffusion control, a sharp current
eak was observed. Under pure diffusion control, a small varia-
ion of voltage caused a large current change because the voltage
as flat for the phase transformation material. For the interme-
iate R = 1 value, a two-step current decay was observed at low
canning rates. Experimental voltammetry plots of battery mate-

ials, such as for LiCoO2 [28,72,73], LiMn2O4 [72], graphite [74],
nd LiFePO4 [75,76] generally have peak shapes similar to those
f solid solutions in Fig. 11(a) and (b). However, they are different

a

b

c

ig. 11. Linear sweep voltammetry curves under three different rates vLSV (0.05, 0.2, and 1
nd (c) g = − 5. (d) Peak current as a function of scanning rate for g = 0 and square root of s
s 196 (2011) 6534–6553

from those of phase transformation material in Fig. 11(c), although
peak positions in those experimental plots correspond to the two-
phase coexistence region in these materials. The simulation results
in Fig. 11(c) represent only a single particle, and the dispersion of
time constants in a composite electrode could broaden the peaks
in Fig. 11(c).

Finally, the scanning rate dependence of the peak current data
for all three thermodynamics is shown in Fig. 11(d). In classical
liquid electrochemistry, the peak current of a redox reaction is
proportional to the square root of scanning rate

√
vLSV , known
as Randles–Sevcik equation [15,22]. This was derived under the
condition of the reversible reaction of an oxidant and reductant,
semi-infinite diffusion, and constant concentration at infinity. In

) and interfacial resistances R of three different thermodynamics (a) g = 0, (b) g = − 3,
canning rate for g = − 3, − 5.
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he present work, the peak current was approximately propor-
ional to vLSV when g = 0 and it was roughly proportional to

√
vLSV

hen g = − 3, − 5. The clear exception was the case of reversible
hase transformation (R = 0.1). The curves for R = 1, 10 were sim-

lar to those in the experimental investigation of LiFePO4 [76]. In
iteratures, both the linear [75,77] and the square root dependence
78,79] on the scanning rate have been observed for LiFePO4.

.4. Impedance spectroscopy

In the simulation of impedance spectroscopy, a sinusoidal cur-
ent j(1) was applied and voltage response  (1) was monitored.
imilar to the constant-current case in Section 3.1, the additional
nterface contribution can be easily obtained. The boundary condi-
ion to be used in Eq. (48) became the following:

(1) = jAC sin(ω�) = jAC sin(2�f�), (68)

here the dimensionless frequency was defined as follows:

= fexpt0, (69)

here fexp is the experimental frequency in Hz.
Initially, the concentration X0 was a uniform value of 0.9 in

he solid. The amplitude of the sine wave jAC was 0.0001, 0.001,
.01, and 0.05. The dimensionless frequency f ranged from 0.05 to
000. For each frequency, a digital sine wave with 1024 uniformly
paced points was applied for one period. Thus, the time stepping
as 1/(1024f) until it reached 1/f. The translation of dimensionless

requency f to experimental frequency fexp dependedon t0, as in Eq.
69). Thus, for a value of 1000 s of t0, 0.05 of f translated to 0.05 mHz
f fexp, which was below the frequency that is normally applied in
xperiments. A value of 1000 for f translated to 1 Hz, which was low
or the high frequency limit in real experiments. From the view-
oint of simulation, this dimensionless high frequency limit can
e easily extended to above 1000, but simulation will require an

ncreasing number of elements to insure convergence. For example,
000 instead of 500 elements were required when a dimensionless
requency of 106was used.

As for the cases of constant-current and constant-voltage sig-
als in Sections 3.1 and 3.2, the evolution of concentration profiles
as presented in Fig. 12 for a sine current wave with dimensionless

mplitudes of 0.01 (left figure) and 0.05 (right figure) at a dimen-
ionless frequency of 0.05, for the phase transformation material
ith g = − 5. As expected, the oscillation of current at the particle
urface x = 1 led to the oscillation of surface concentration. For the
mall amplitude of 0.01, phase separation was not initiated. For the
arger amplitude of 0.05, the particle exhibited a two-phase coex-
stence at a quarter of a period with � = 5, and the phase boundary
inued ).

oscillated from � = 5 to � = 15. The concentration at the end of the
period was almost the same as the initial condition. The evolution
of concentration profiles in the solid solutions was similar to values
in the left figure of Fig. 12.

The solution of Eq. (48) with boundary conditions Eq. (68) pro-
vided the time domain voltage signal 
 (1) = (1) − (1, � = 0),
which can be expanded as a Fourier series [80]


 (1, �) = a0

2
+

∞∑
n=1

An cos(nω� + �n), (70)

where a0/2 is the Faradaic rectification (DC component), An and
�n are the amplitude and phase angle of the nth harmonic term.
The classical impedance spectroscopy only looks at the 1st or fun-
damental harmonic term as in Eq. (61). These coefficients can be
obtained from a Fast Fourier Transform based Fourier (harmonic)
analysis detailed in Ref. [80].

Impedance spectra of the 1st harmonic in the form of a Nyquist
plot are shown in Fig. 13(a) for the different amplitudes investi-
gated, along with the analytical results (dashed lines) from Eq. (61)
by replacing s with iω. The spectrum shape behaved as a series com-
bination of a resistor and a capacitor at low frequencies and has
been traditionally called the Warburg element with impermeable
[30], reflecting [81], reflective [82], open [81], and restricted [83]
boundary conditions, as well as a finite-space Warburg element
[84] or T element [85]. Numerical results of the smallest amplitude
of 0.0001 were closely matched to analytical results as expected.
As the amplitude increased, deviations can be observed for both
solid solutions and phase transformation material. This nonlinear
behavior was due to the nonlinear form of the partial differential
equations Eq. (48), common to all three cases. As g changed from
0 to −3 and −5, the diffusivity of Eq. (60) decreased, and vertical
tail height decreased at the same frequency range. The nonlinear
behavior can also be quantified from the harmonic analysis; the
results are shown in Fig. 13(c). The voltage amplitude ratios of the
0th and 2nd harmonic term to the 1st harmonic term are plotted.
First, the contribution of the 0th harmonic term (DC component)
was always relatively large but this information is rarely studied
theoretically or experimentally. Second, the 2nd harmonic term at
the high frequency range increased slightly with increasing ampli-
tude. In addition, even at the smallest amplitude of 0.0001, this
contribution was close to 10%, and a slight deviation from analyti-
cal results (dashed lines) can be clearly observed in Fig. 13(b), with

g = − 5 and amplitude 0.05 as an example. Third, the 2nd harmonic
term at the low frequency range increased greatly with increas-
ing amplitude which can also be observed by the clear deviation
in Fig. 13(a). Finally, for the phase transformation material with
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ig. 12. Evolution of the concentration profile under a sinusoidal current of amplitu
imensionless times are shown on each curve. The simulation was performed for o

ime 0 in both figures. Particle surface and center are at the position of 1 and 0, resp

= − 5, a large sine current of 0.05 reached the unstable region and
nitiated the phase separation at low frequencies. This led to the
argest deviation from the analytical results, which can be seen in
ig. 13(b).
.5. Initial condition of “X = 0.5”

In addition to the initial concentrations of 0.9 and 0.99 discussed
bove, a value of 0.5 seemed to be another interesting initial con-

a b

c

ig. 13. (a) Nyquist plot of the 1st order harmonic term under different current amplitud
= − 3, and (c) g = − 5. (b) Enlarged Nyquist plot at high frequencies under an amplitude

erms to that of the 1st order harmonic term at different current amplitudes and frequen
= 0.01 (left) and jAC = 0.05 (right) for the phase transformation material with g = − 5.
iod of time 20. The curves corresponding to time 20 are almost the same as that at
ly.

centration. However, as can be seen in Fig. 2(a), this concentration
corresponds to a separation of two phases for the phase transforma-
tion material with g = − 5. In other words, a uniform concentration
profile of 0.5 is not a valid initial condition for g = − 5.

Instead, the particle was charged at a constant current of 0.1 for

the duration of dimensionless time of 4, starting from a uniform
concentration of 0.9. The delivered capacity will change the overall
average concentration to 0.5. Then the current was turned off and
the particle was relaxed for another time period of 4. For solid solu-

es jAC (0.0001, 0.001, 0.01, and 0.05) for three thermodynamic parameters g = 0, (b)
of 0.05 for g = − 5. (c) Voltage amplitude ratios of the 0th and 2nd order harmonic
cies.
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ig. 14. Evolution of concentration profile of a solid solution g = 0 (left) and a phase
ollowed by relaxation for a time of 4. Dimensionless times are shown on each curv

ions, the concentration profile was expected to relax to a uniform
alue of 0.5 across the particle. The case of g = 0 is shown in the left
gure of Fig. 14 with labeled dimensionless times. Similar behavior
as found for the case of g = − 3. However, for g = − 5 (right figure),

he final relaxed state of apparent concentration of 0.5 exhibited the
oexistence of two phases. The two phases had the same composi-
ions of binodal points B1 and B2 in Fig. 2(a). These two different
ehaviors can be understood by Eq. (48). A zero current during
elaxation implied a constant value of  across the particle. For
olid solutions, � = 0 led to constant values of concentration every-
here. Conversely, a concentration gradient was possible with a
onzero value of � . A good analog was the space charge concept
ith the balance of concentration and electrical driving forces [86].

.5.1. GITT
In the context of GITT, the right-hand side of Eq. (63) is a

onstant. This condition was not satisfied for an initial uniform con-
entration of 0.99 shown in Fig. 7. The same types of plots are shown
n Fig. 15 for solid solutions with a uniform concentration of 0.5 and
hase transformation material with initial two-phase coexistence.
he dashed lines are the calculated results from Eq. (63). A plateau
as obtained up to an approximate time of 0.5 for g = 0 and 1 for

= − 3. The data with g = − 5 were close to constant and oscillated
round the dashed line.

The difference between Figs. 7 and 15 can be understood by the
ssumption used to obtain Eq. (63), i.e. the application of current

ig. 15. Short-time characteristic curves according to Eq. (63) under three different curre
ines represent the plateaus expected from the small-signal assumption. The initial condi
formation material g = − 5 (right), under a constant current j(1) = 0.1 for a time of 4
ticle surface and center are at the position of 1 and 0, respectively.

step leading to a small value of
 . For the initial concentration of
0.99, the equilibrium curve was steeper compared to those of the
initial concentration of 0.5, Fig. 2(a). Thus, it was more difficult to
meet the small-signal approximation for concentration of 0.99.

3.5.2. PITT
For the initial concentration profile in Fig. 14 of the phase trans-

formation material, current decay following the voltage step is
shown in Fig. 16. Compared to the initial condition with a single-
phase, Fig. 10(e), the first stage single-phase decay and current
spike disappeared because the particle was initially at the two-
phase coexistence.

3.5.3. EIS
For solid solutions with g = 0, − 3, simulation results for the

initial uniform concentration of 0.5 (Fig. 17(a)), exhibited similar
shapes compared to those for the concentration of 0.9, Fig. 13(a).
Again, dashed lines represented results predicted from the analyt-
ical expression of Eq. (61). Impedance spectra appeared linear up
to an amplitude of 0.01. At higher amplitude, e.g. 0.05, impedance
values became larger as opposed to smaller in Fig. 13(a). Harmonic
analysis, Fig. 17(b), revealed similar DC and 2nd harmonic terms

compared to those in Fig. 13(c).

However, in Fig. 17(a), the impedance spectra of the phase
transformation material g = − 5 have different shapes from those
for the concentration of 0.9, Fig. 13(a). This shape behaved as a

nts for three different thermodynamic parameters g = 0, g = − 3, and g = − 5. Dashed
tion is the relaxed state in Fig. 14, i.e. “X = 0.5”.
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ig. 16. Current response for phase transformation material with g = − 5 under three
tate in Fig. 14, i.e. “X = 0.5”.

esistor instead of a capacitor at low frequencies and has been
raditionally called the Warburg element with Nernstian [30],
bsorbing [81], transmissive [82], short [81], and bounded [83]
oundary conditions, and finite-length Warburg element [84] or
element [85]. The dashed line corresponds to a reflective War-

urg element predicted according to Eq. (61) from a uniform
nitial concentration of the binodal point B1. The outer half of the

article had this concentration of B1 as can be seen in Fig. 14.
imilar experimental impedance spectra compared to those in
ig. 17(a) were observed for the 50% charged LiFePO4 electrode
87].

a

b

ig. 17. (a) Nyquist plot of the 1st order harmonic term under different current amplitud
ondition is the relaxed state in Fig. 14, i.e. “X = 0.5”. (b) Voltage amplitude ratios of the 0t
urrent amplitudes and different frequencies.
ent voltage step and interfacial resistance values. The initial condition is the relaxed

The analytical result that led to the reflective Warburg element
was obtained under the assumption of a constant initial concen-
tration and a small-signal perturbation. Thus, it was natural to
compare concentration profiles obtained from the current initial
condition and those from the uniform initial concentration of 0.9.
Fig. 18 shows the concentration evolution under a sine wave of
amplitudes 0.01 (left) and 0.05 (right) at a frequency of 0.05. The

initial condition � = 0 was the relaxed state in Fig. 14. It was appar-
ent that neither of the figures in Fig. 18 satisfied the constant initial
concentration condition, although the signal on the left figure can
be considered small amplitude. Oscillation of surface concentration

es for three thermodynamic parameters g = 0, (b) g = − 3, and (c) g = − 5. The initial
h and 2nd order harmonic terms to that of the 1st order harmonic term at different
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Fig. 18. Evolution of the concentration profile of a solid solution g = 0 and a phase transformation material g = − 5, under sine waves of amplitudes 0.01 (left) and 0.05 (right)
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t a frequency of 0.05. The initial condition is the relaxed state in Fig. 14, i.e. “X =
ne period of time 20. The curve corresponding to time 20 is almost the same as th
espectively.

as accompanied by the “in-phase” oscillation of phase bound-
ry, and this was the reason that a transmissive Warburg element
as observed in Fig. 17(a) (g = − 5). Harmonic analysis of Fig. 17(b)

eveals larger harmonic terms with higher input amplitudes at low
requencies. Finally, it was interesting to note that a large sine cur-
ent could induce a peculiar phase I|II|I sandwich structure, e.g.
etween time 15 and 20 on the right figure of Fig. 18. It is possible
hat this structure can also be obtained by applying any large ampli-
ude discharging signal from the initial condition in Fig. 14, although
his has been rarely discussed theoretically or experimentally.

.6. Symmetry effect

All the above numerical results were obtained for the planar
ymmetry m = 0 to facilitate a comparison with the well-known
elations such as the Cottrell, Randles–Sevcik equation, etc. Small-
ignal solutions with short-time and long-time approximations
ave been determined for spherical, cylindrical, and planar symme-
ry, under the application of a constant-current, constant-voltage,
nd sinusoidal current/voltage in Ref. [12]. The numerical simula-
ion with arbitrary magnitude signal suggested that many features
hown in previous sections were common to all three symmetries

not shown). One difference worth pointing out was that the two-
tage current-decaying behavior found for the constant-voltage
nd linear sweep voltage signals (Figs. 10(e) and 11(c)), was less
istinct for the cylindrical and spherical symmetry. Current wave-

a

ig. 19. (a) Current response for the spherical phase transformation material with g = −
ondition is a uniform concentration of 0.9. (b) Linear sweep voltammetry curves for sph
.2, and 1) and R = 1. The initial condition is a uniform concentration of 0.99.
imensionless times are shown on each curve. The simulation was performed for
time 0 for the left figure. Particle surface and center are at the position of 1 and 0,

forms for the voltage step with R = 10 and the linear sweep voltage
with R = 1 are shown in Fig. 19. In both figures, the distinction
of current decay due to phase boundary movement and the fol-
lowing single-phase diffusion was subtler for spherical symmetry
compared to planar symmetry. Another difference was the time
dependence of the phase boundary position in different symme-
tries. The phase boundary position to the second (spherical), one
and half (cylindrical), and first (planar) power had a square root
and linear time dependence under the voltage and current step,
respectively.

3.7. Applicability of present work to real battery materials

This simulation study provided herein presents a framework
that employs a regular solution model (thermodynamic) and a
generalized Poisson–Nernst–Planck equation set with a resistive
boundary condition (kinetic) on a single particle (microstructure).
The parameter space was [c0+, r0,�0+, g, �,D0+, R]. Variables c0+ and
r0 were the maximum concentration and particle size along the
symmetry direction, respectively. Variables �0+ and g were related
to the voltage plateau and miscibility gap [47] of the voltage curve.
Variable � represented the interfacial energy between coexisting

solid phases during the phase transformation. Diffusivity D0+ was
the primary kinetic parameter which was also related to the ionic
conductivity or mobility through Eqs. (27) and (28). Finally, R rep-
resented the resistance across the solid|liquid interface.

b

5 under three different voltage steps 
v (0.2, 0.5, and 1) and R = 10. The initial
erical phase transformation material g = − 5 under three different rates vLSV (0.05,
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One or more components of the thermodynamics, kinetics,
nd microstructure may have to be improved to allow more
uantitative comparison with experimental data, usually from
omposite electrodes. For example, the regular solution model
an only roughly approximate the phase transformation materials
uch as LixFePO4 [63,88] and Li4+3xTi5O12 [89], with pseudo anti-
ymmetrical voltage curves. In the previous phase field study of
ixFePO4, g values of −4.7 [39] and −10 [38,48] were used. The
nterfacial energy between coexisting phase is normally difficult to

easure experimentally, and estimates of values related to inter-
acial energy parameter � were also provided in references for
ixFePO4 [38,39,48]. On the other hand, the regular solution model
enerally cannot be applied to other common materials, such as
ixCoO2 [22], LixC6 [90,91], or LixMn2O4 [92,93], which have more
omplex voltage dependences. These materials have more than one
wo-phase coexistence regions. A discussion on the correlation of
ther thermodynamic models and properties with practical battery
aterials will appear in another manuscript.
The present simulation can easily be extended to more than

ne dimension by using the original equations with gradients and
aplacians, Eqs. (5)–(8). In addition, the single particle considera-
ion can easily be extended to a collection of particles, where either
seudo 2D symmetry from volume averaging [13,51,52], or the
rute-force 2D [94] or 3D [95] calculations can be performed.

. Conclusions

Numerical modeling of a single intercalation battery particle
as performed in this study for four different electrical signals,

uch as the current step, voltage step, linear sweep voltage, and the
inusoidal voltage. Techniques that utilize these signals are gen-
rally known as constant-current charging/GITT, constant-voltage
harging/PITT, CV, and EIS in the battery field. Thermodynamic and
inetic properties of interest included a solid solution with con-
tant diffusivity, a solid solution with variable diffusivity, and a
hase transformation material. In addition, the interfacial behav-

or of particle and liquid electrolyte was incorporated as a resistor.
t was found that the known small-signal solutions of GITT, PITT,
nd EIS were valid only under the conditions of a uniform initial
oncentration profile, a small-signal perturbation, and no interfa-
ial effects. Some interesting phenomena were observed from the
imulation of the phase transformation material. Typical progres-
ion for the current/voltage response in the phase transformation
xhibited a single-phase diffusion, the initiation of phase separa-
ion, movement of the phase boundary, and another single-phase
iffusion. This has important implications in the interpretation of
xperimental data involving phase transformation battery materi-
ls.
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